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The helix-loop-helix (HLH) transcription factor inhibitor of DNA binding 2 (Id2) has been implicated as a regulator of
hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive
immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system,
Id2 is required for the development of mature natural killer (NK) cells, lymphoid tissue-inducer (LTi) cells, and the recently
identified interleukin (IL)-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated
in the development of specific dendritic cell (DC) subsets, decisions determining the formation of αβ and γδ T-cell development,
NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the
current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for
maintaining immune homeostasis and immune protection.

1. Introduction

Protective immunity relies on the differentiation and mat-
uration of lymphocytes into different cell lineages and the
subsequent development of effector functions. Common
lymphoid progenitors (CLPs) found in the bone marrow give
rise to multiple different lineages including B, T, natural killer
(NK) cells, NK T (NKT) cells, dendritic cells (DCs), and
lymphoid tissue-inducer (LTi) cells. In the peripheral tissues,
these lineages undergo further diversification as they mature.

Transcription factors play a key role in the commitment
of lymphocytes to specific lineages. This is achieved through
alteration of gene expression profiles in response to extrinsic
signals (such as cytokines) that progressively restricts the
developmental potential of these progenitors as they mature.
Distinct transcriptional programs drive the proliferation,
survival, and differentiation of lymphocytes into functionally
different cell types. Dysregulation of these programs can
often lead to inflammatory or autoimmune disease, cancers,
and a compromised immune response. Thus, understanding

how appropriate lineage-specific gene expression is achieved
and maintained at steady state and in response to a pathogen
challenge is important.

The basic Helix-Loop-Helix (bHLH) group of tran-
scription factors, the E proteins, and their inhibitors, the
inhibitor of DNA binding (Id) proteins, have been shown
to play distinct and fundamental roles in the regulation of
lymphocyte differentiation [1, 2].

2. E Proteins

E proteins are a class of transcription factors that consist of
HEB, E2-2, and the E2A gene products E12 and E47 that are
produced by alternative splicing. They belong to a family of
bHLH transcription factors that regulate gene expression of
downstream targets by binding or associating with consensus
E-box sequences in DNA [3]. These sequences are present in
the regulatory regions of a number of lineage-specific genes
such as CD4 in T cells and mannose-binding lectin 1 (Mbl1)
in B cells [4]. Members of the bHLH family are defined by
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two conserved domains—the HLH domain regulates homo-
and/or heterodimerization while their basic domain plays a
part in the binding of dimers to DNA [5].

The E protein, E2A, is essential for the development of
committed B lymphocyte progenitors from CLPs (Table 1)
[6, 7]. E2A-deficient mice completely lack B-cells due to the
requirement of E2A for pro-B-cell development into mature
B cells prior to the IgH D-J rearrangement [8]. Interestingly,
E2A regulates this transition in a dose-dependent manner
which is reflected in an ∼50% reduction in the prevalence of
pro-B cells in E2A+/− mice [7, 8]. However, E proteins do not
function in isolation to control lymphocyte development.
For example, the Early B-cell Factor (EBF)-1 and Pax5
transcription factors are also key determinants in B-cell
differentiation and restrict cells at the pro-B-cell stage to
adopt a B-cell fate [9, 10]. Through biochemical and genetic
analysis, it has been shown that E2A acts upstream of Pax5
and EBF during pro-B-cell development [11–13]. Thus, E2A
is likely to be one of the earliest transcription factors that
positively directs lymphocyte progenitors into the B-cell
lineage.

E proteins are also involved in the stepwise develop-
mental steps of T cells from CD8−CD4− double negative
(DN) to CD8+CD4+ double positive (DP) to single positive
CD8+ T cytotoxic cells or CD4+ T helper cells [14, 15].
These proteins have been shown to function together as het-
erodimers in T-cell development [15]. Thymocytes express
multiple E proteins that have previously been thought to
play complementary and compensatory roles during early
T-cell differentiation. It has since been shown that HEB
was uniquely required for the development of CD8+CD4+

double positive stage of T-cell development and for the
development of invariant natural killer T cells at an early
progenitor stage [16]. Only relatively mild defects in T-cell
development were observed in mice lacking either E2A or
HEB, but mice lacking both proteins or dominant negative
HEB mutants had severe T-cell deficiencies due to a partial
blockade of developing T cells at the DN stage of TCRβ gene
rearrangement [14, 17–20]. Thus, these studies demonstrate
the existence of functional redundancy within the E protein
family. A role of E proteins in regulating NKT cells had
not been previously reported, but the E protein antagonist
Id2 has been implicated in regulating NKT cell homeostasis,
suggesting that such a link may exist [10].

3. Id Proteins

The four Id proteins, Id1-4, are closely related in their HLH
regions but differ in their tissue distributions [21, 22]. Id
proteins dimerize with ubiquitously expressed E proteins
through their highly conserved HLH motif. In contrast to E
proteins, Id proteins lack the adjacent basic region necessary
for DNA binding; thus, Id/E protein complexes inhibit E
protein binding to DNA. Id proteins have many functions
during early lymphopoiesis including B-cell specification
and in directing the divergence of NK, αβ, and γδ T-cell
lineages in early thymopoiesis (Figure 1, Table 1) [23–26].
Overexpression of Id1, Id2, or Id3 appears to have similar

effects on lymphocyte development and block both B-cell
and T-cell development [27–30]. The specific action of Id
proteins in controlling lineage fate decisions depends on the
ratio of Id to E proteins in developing cells. These levels
can be modulated by extrinsic factors such as cytokines. In
addition to E proteins, Id proteins have also been shown
to interact with other transcription factors including the
retinoblastoma protein (Rb), the ETS (E-twenty six), and Pax
(Paired box) families to control cell differentiation [31–33].

4. Id2, LTi Cells, and Lymphoid
Tissue Development

Id2 is a critical regulator of multiple steps in development
of lymphoid tissue and lymphocyte differentiation (outlined
in Figures 1 and 2). Mice deficient in Id2 fail to develop
lymph nodes, Peyer’s patch, and other secondary lymphoid
tissues including nasal-associated lymphoid tissues (NALTs)
[26, 34]. This is attributable to the lack of LTi cells (Figure 2)
[25, 26].

LTi cells are essential for the development and organ-
ization of secondary lymphoid tissue and appear to play a
key role in the maintenance and restoration of these tissues
after destruction from disease [34–39]. LTi cells are classi-
cally defined as lineage negative (CD3−CD19−NK1.1−

Gr.1−CD11c−) CD45+c-kitlowIL-7R+CD4+/− [38] and are
thought to originate in the fetal liver from IL-7R+Sca-1lowc-
kitlow progenitors [40]. They depend on IL-7 signalling which
acts through IL-7R leading to expansion of the LTi cell pool
for lymphoid tissue organogenesis [41, 42]. Unexpectedly,
LTi cells have been shown to produce IL-17 and/or IL-22
which are not required for lymph node formation but are
critical for tissue remodelling [43, 44]. Both Id2 and Rorγt
are required for induction of the signaling cascade involving
IL-7R and LTα1β2/LTβR that eventually leads to the for-
mation of lymph nodes and Peyer’s patch. The formation
of NALT, however, appears to be independent of Rorγt and
LTβR signaling [26, 34, 45]. Id2 is thought to regulate the
differentiation of a common ancestor to LTi cells responsible
for NALT, Peyer’s patch, and lymph node organogenesis,
and it is possible that Rorγt is required further downstream
to augment the signalling cascade. Studies of knockout
and transgenic mice including retinoic acid-related orphan
receptor (Ror) γt−/− (Rorγt−/−), LTα−/−, CXCR5−/−, IL-
7R−/−, Janus Kinase (JAK) 3−/−, and Thymocyte selection-
associated high-mobility group box (TOX)−/− mice have
shown that in addition to Id2, Peyer’s patch organogenesis
and/or development of functional LTi cells also depend on
these molecules [36, 46–49].

5. Id2 and Innate Lymphoid Cells

Innate lymphoid cells have recently emerged as a novel family
of diverse hematopoietic effector cells that serve protective
roles in immune responses to infectious organisms, in
lymphoid tissue formation, and in the homeostasis of
stromal cells. Collectively, they include NK cells and LTi cells
in addition to nonclassical innate lymphoid cells that can
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Figure 1: Regulation of NK, NKT, and innate lymphoid cells by Id2 during development. (a) Distinct subsets of lymphoid cells develop
from hematopoietic cell precursors in the fetal liver in an Id2-dependent manner. Innate lymphoid cells can be divided into three main
branches—(i) NK family, (ii) nuocytes/natural helper cells, and (iii) LTi/NKR-LTi cells that are dependent on Rorγt. The NK cell lineage is
characterised by its spontaneous cytotoxicity and dependence on IL-15 for development. They develop from a bipotent T/NK cell precursor
(pT/NK). The second group of cells contain the nuocytes and natural helper (NH) cells that facilitate B-cell responses. Although these
cells depend on IL-7 and IL-2 for their development, they do not require Rorγt. The Rorγt-dependent branch includes LTi cells and innate
lymphoid cells (including NKR-LTi cells) which produce the cytokines IL-17 and IL-22 and require IL-7 signaling. (b) Distinct subsets of
lymphoid cells develop from a common lymphoid progenitor in the bone marrow of the adult mouse and upregulate or require Id2 during
development—(i) conventional NK cells (cNK), (ii) thymic NK cells, and (iii) NKT cells. NK cell progenitors upregulate Id2 and receive
IL-15 signals to become mature cNK cells. Thymic NK cells develop from a CD44+CD25− bipotent NK/T cell precursor where upregulation
of Id2 leads to an NK cell fate. These cells differ from cNK cells as they require both IL-7 and IL-15 signaling for development. They also have
an enhanced ability to secrete TNF-α and IFN-γ compared with cNK cells. NKT cells develop from T cell-committed double-positive (DP)
thymocytes. During maturation of NKT cells in the thymus, Id2, together with an array of surface markers, is upregulated and culminates in
NKT cells that are able to expand into the periphery.
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produce IL-5, IL-13, IL-17, and/or IL-22 (Figure 1). These
lineages appear to be developmentally related requiring both
the expression of Id2 and cytokine signalling through the
common γ-chain of the IL-2 receptor. Functionally, these
cells are quite heterogeneous (Figure 1(a)). For example,
innate lymphoid cells that secrete the cytokines IL-5 and
IL-13 are found in the adipose tissue associated with the
mouse mesentery. These lin−c-kit+sca-1+ cells have been
termed “nuocytes” or natural helper cells reflecting their
ability to provide help to the B1 cells [50]. Another class of
nonclassical innate lymphoid cells are characterized by their
expression of the NK cytotoxicity receptor, NKp46 (encoded
by NCR1, the natural cytotoxicity receptor), and their ability
to produce IL-22. They have recently been described as NKR-
LTi (NK receptor LTi) cells and are found predominantly
in the intestinal lamina propria and Peyer’s patches, as well
as other mucosal compartments including the mesenteric
lymph nodes [51–53]. They are dependent on the expression
of Rorγt, have negligible levels of expression of NK1.1, and
lack cytotoxic functions [53]. Although these cells are defined
by their surface expression of NKp46, they do not depend
on NKp46/NCR1 for their development [53]. NKR-LTi cells
are more closely related to LTi cells than NK cells as both
LTi and NKR-LTi lineages depend on Id2 and Rorγt for
their development, express c-kit, require IL-7 signaling, and
secrete both IL-22 and IL-17 in response to IL-23 signaling
through the IL-23R [52]. However, only a small fraction
of NKR-LTi cells produce IL-17 [53, 54]. NKR-LTi cells are
thought to play an important role in intestinal immunity
as they significantly reduced in germ-free mice implying
that signals from gut microflora drive their proliferation and
survival [53, 55].

NK, LTi, and NKR-LTi cells depend on Id2 for their
development, raising the possibility that they may stem
from a common progenitor. In vitro, CD4+CD3− LTi cells
were shown to differentiate into NK cells when cultured
in IL-2, which lead to the proposal that this population
contains progenitors of NK cells [38]. Further analysis has
elucidated that the different Id2-dependent lineages found
in the gut - LTi, NKR-LTi, and NK cells may develop
along different pathways driven by specific cytokines. IL-7
is required for the proliferation of LTi and NKR-LTi cells
which are dependent on Rorγt. In man, LTi and NKR-
LTi cells also depend on Rorγt (RORC in humans) for
their development, while NK cells arise from RORC−lin−c-
kit+KLRG1+IL-7R− precursors [56]. It is IL-15 that drives
the differentiation of NK precursors into mature NK cells
via a Rorγt-independent pathway [56]. This is supported
by the finding that a severe loss of mature NK cells occurs
in IL-15−/− mice, while LTi and gut NKR-LTi cell numbers
are similar to those in wild-type mice [53]. Further lineage
relationship analysis by inducible fate mapping of Rorγt
and in vitro cultures has shown that LTi and NKR-LTi
cells stem from various subsets of foetal liver precursors
based on Rorγt and α4β7 expression, while NK cells arise
from a Rorγt−α4β

+
7 progenitor [57]. Although LTi and NKR-

LTi cells share some characteristics with NK cells, they
are developmentally and functionally distinct from NK
cells. Precisely how LTi and NKR-LTi cells are related is a

question that has received much attention in recent years.
In vitro culture and in vivo transfer experiments have shown
potential developmental plasticity between these two cell
types. In this setting, Rorγt+ LTi-derived cells were able to
upregulate NKp46 suggesting that LTi-like cells may be direct
progenitors of NKR-LTi innate immune cells but not NK cells
[58].

6. Id2 and NK Cells

NK cells play an essential role in immune surveillance and
defence against intracellular pathogens. They develop from
CLPs in the bone marrow but also arise in the fetal liver
and thymus from a more restricted T/NK cell progenitor.
Here, the most immature but committed NK cell progenitors
are defined by their expression of the IL-2/IL-15-β receptor,
CD122, and the absence of the T lymphocyte markers
CD3, CD4, and CD8 [59, 60]. NK cells are dependent on
the cytokine IL-15 for their proliferation and expansion
into mature NK cells [61, 62]. Several transcription factors
including Ets-1, MEF-1, PU.1 [63–65], and Id2 are required
for the development of the CD122+ NK lineage cells in the
thymus and bone marrow-derived mature NK cells in the
spleen [25, 26, 66].

Although the development of T cells in the thymus is well
defined, thymic NK cell development from a bipotent NK/T
cell progenitor and the mechanisms regulating this pathway
are less well studied. Analysis of NK/T cell progenitor
activity in the fetal thymus demonstrated that the most
immature thymocytes, the CD44+CD25− stage, contain NK
development potential. This potential continues until cells
reach the CD44+CD25+ stage [76]. E2A-deficient mice have
a partial block at the earliest stages of T-cell development in
the thymus where NK/T cell progenitors arise [14, 17]. In
addition, HEB−/− and the transheterozygous E2A+/−HEB+/−

mice also display defects in the transition from the double-
negative to the double-positive stage of T-cell maturation
[15, 74, 75].

Id2-deficient mice display a severe reduction in thymus-
derived NK cells. It appears to play differential roles in NK
cell development in the bone marrow and thymus. In the
bone marrow, Id2 is not thought to be required for the
development of committed NK progenitor cells but instead
acts to regulate the formation of mature NK cells [25]. This
maturation process is at least in part regulated by interactions
between Id2 and E2A activity as loss of both Id2 and
E2A restores the development of mature NK cells. Despite
this, these cells are impaired in their ability to emigrate
from the bone marrow to spleen or in peripheral blood.
Thus, overexpression of E-box proteins in this setting may
contribute significantly to the lack of NK cell development in
Id2-deficient mice [25].

The collaborative role of Id2, HEB, and IL-15 in NK
cell development has been further investigated. It has been
hypothesised that the cytokine IL-15 and Id2 work syner-
gistically to drive differentiation of NK cells in the thymus
[77]. Id2 is expressed in the thymic CD1α−CD5+precursor
that has both NK- and T-cell potential. These cells could be
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Table 1: Phenotype of mouse strains lacking Id and E proteins.

Gene Phenotype Reference

Id1
No significant phenotype in Id1−/−

Id1−/−/E2A−/− knockout mice has improved postnatal survival compared to E2A−/− mice
[67]

Id2

Lack lymph nodes, Peyer’s patch and NALT
Effects in memory CD8+ T cell maintenance
Lack NK cells
Lack CD8α+ DCs and Langerhans cells

[26, 34, 68,
69]

Id3
Overexpression promotes NK cell development
Defects in B and T cells
Increase in γδ T cell production

[70] [71]

Id4
Smaller brain size
Block in differentiation of neural progenitors
Role in lymphopoiesis not yet investigated

[72]

E2A
Increased number of NK cells
Ablated B-cell development

[6]

E2-2 Lack plasmacytoid DCs [73]

HEB Disruption of αβ thymopoiesis from the DN to DP stage [15, 74, 75]

expanded and differentiated into mature NK cells in the pres-
ence of IL-15 [77]. In this setting, induction of Id2 promoted
NK cell development but impaired T-cell differentiation.
This pathway could be reversed by coexpression of HEB
suggesting that the balance between Id2 and HEB in the early
progenitor cells is an important factor in determining NK/T
cell fate. Indeed overexpression of HEB leads to commitment
to the T-cell lineage, while high levels of expression of Id2
commit progenitors to an IL-15 responsive NK-cell lineage
[77].

7. Id2 and Natural Killer T Cells

Natural Killer T (NKT) cells are defined by their expression
of CD4, NK1.1, and CD44. NK T cells have characteristics
of both CD8+/CD4+T cells and NK cells [78]. They can be
divided into three main subsets, the most studied being the
invariant Vα14 T-cell receptor expressing NKT (iNKT) cell
population [79]. These cells also use several transcription
factors such as Id2 and cytokines that are also key regulators
of NK and T-cell differentiation (Figure 1(b)). Similar to
NK cells, Id2 is highly expressed in NKT cells compared
with naı̈ve CD4+T cells suggesting it also plays a role in
NKT cell development. Indeed, it has been found that Id2-
deficient NKT cells have reduced expression of the homing
receptor, CXCR6, and the proapoptotic molecule, Bim [80].
Regulation of these two molecules by Id2 and E protein
transcription factors appears to be important in regulating
the survival and accumulation of NKT cells in the liver
[10].

8. Id2 and DCs

DCs are professional antigen-presenting cells that act as
sentinels in the body and protect against pathogen infection.
DCs originate from hemopoietic precursors and differentiate

into a variety of subsets that have been defined based on
their anatomical location, phenotypic appearance, and their
capacity to take up, process, and present antigens. DCs are
divided into two major populations—namely the conven-
tional DCs (cDCs), which are highly efficient in taking up
and presenting antigens, and plasmacytoid DCs (pDCs),
that produce abundant amounts of interferon (IFN)-α in
response to viral infection [81, 82].

Several transcription factors including Id2, interferon
regulatory factors (IRFs)-2, 4, and 8, Stat3, Gfi-1, and
PU-1 have been implicated in the development and/or
homeostasis of DC populations [83–89]. Precisely where
and how these transcription factors act to define DC subset
specification is less clear. All DC subsets arise from Flt3R-
expressing myeloid or lymphoid precursors and depend on
the expression of the transcription factors PU.1 and IRF-8
[89–93]. Recently, Id and E proteins have been found to be
critical for lineage specification of cDCs and pDCs (Figure 2).
pDC fate is specifically determined by E2-2 (Tcf4) which
also induces the expression of the transcription factors Spi-
B, IRF-8, and IRF-7 required for their function [73, 94,
95]. Furthermore, ectopic expression of Id2 in multipotent
progenitors prevented pDC, but not cDC, development
presumably by inhibiting E2-2 function [96]. cDC lineages
do not depend on E2-2 but instead rely on IRF-8, Id2,
and the basic leucine zipper transcription factor, ATF-like 3
(or Batf3), for subset specification [68, 84, 97]. During DC
differentiation, Id2 expression is upregulated and this effect
is strongly enhanced by the addition of TGF-β, suggesting
that Id2 is crucial for the development of certain DC subsets
[68]. Mice that lack Id2 fail to develop CD8α+ DCs, LCs,
and the more recently described CD103+ DC subset which
shares many features with CD8α+ DCs [68]. Complementing
these findings, mice deficient in TGF-β lack LCs suggesting
a link between TGF-β induction and Id2. Intriguingly, mice
that lack the transcription factors IRF-8, Id2, or Batf3 present
with similar defects—that is, they have significantly reduced
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Figure 2: Transcription factors involved in DC development. Several transcription factors are required for the development of the common
DC progenitor into functionally and phenotypically distinct subsets. IRF-8 is required for the development of both pDC and some cDC
populations including the CD103+ and CD8α+ DC subsets. The bHLH protein E2-2 specifies the pDC lineage and is also required for the
maintenance of mature pDC identity. During differentiation, Id2 is induced in all conventional DC subsets and binds E2-2 to prevent their
development into pDCs. The transcription factor Batf3 is essential for the development of CD103+ DCs; however, precursors of CD8α+ DCs
can develop in its absence although their survival is impaired. Other DC (CD4+ and CD4−CD8− DCs) subsets depend more specifically on
IRF-4 for their development.

numbers of CD8α+ and CD103+ DCs. This initially suggests
that these DC subsets may be highly related. The exact
action of each of these transcription factors in regulating
the steps involved in DC subset differentiation is not yet
defined. It is also not known how different E proteins are
induced and regulated in DC subsets although the balance
between Id2 and E proteins is likely to be important in subset
specification.

9. Id2 and Peripheral T-Cell Differentiation

CD8+ and CD4+ T cells are crucial for clearance of infection
by viruses, intracellular bacteria, and protozoan parasites.
On recognition of foreign pathogens, naı̈ve T cells quickly
become activated and develop effector functions that enable
them to eliminate these pathogens. The initial phase of
expansion and acquisition of effector function is followed
by a contraction phase where the majority of the reactive T
cells undergo programmed cell death leaving behind a small,
but relatively stable, population of memory cells. These
cells are poised to quickly respond to a second encounter
with the same pathogen. This differentiation process is
tightly regulated by a number of transcription factors. T-bet,
eomesodermin (eomes), B lymphoycyte-induced maturation
protein-1 (Blimp1; also called PRDI-BF1 in humans and

encoded by the Prdm1 gene), Id2, and Bcl-6 appear to be
important for the generation and maintenance of CD8+ T
cell memory [69, 98–100], reviewed in [101, 102]. In CD4+

T cells, T-bet, GATA-3, IRF-4, RORγt, and Foxp3 regulate
differentiation of the different lineages (reviewed in [103]).

Id2 has recently been found to play a role in the
maintenance of effector and memory CD8+ T cells despite
the fact that Id2−/− mice appear to have normal development
of their T-cell compartment [26, 69]. Id2 expression is low
in naı̈ve CD8+ T cells, but it is markedly upregulated in
antigen-specific T cells following infection in vivo. Mice
deficient in Id2 appear to lack effector memory, but not
central memory, CD8+ T cells, but the mechanism by which
this arises is unclear. However, when Id2−/− mice are infected
with Listeria monocytogenes, the CD8+ T-cell response is
strongly impaired even though the antigen-specific T cells
appear to proliferate normally during the immune response
[69]. It is known that Id proteins contribute to the regulation
of cell cycle progression. Thus, it has been proposed that lack
of Id2 in T cells leads to enhanced apoptosis by increased
expression of Bim and CTLA-4 and reduced expression of
Bcl-2 [69]. Whether apoptotic proteins are directly regulated
by Id2 during differentiation or, alternately, whether cell
death is the outcome of cell cycle arrest that occurs in the
absence of Id2 (perhaps a consequence of disregulated bHLH
partners) is still unclear.
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The regulation of CD4+ T-cell differentiation into effec-
tor and memory populations by Id2 has not been extensively
investigated. Id2-deficient mice exhibit features of a Th2 bias
with increased IgG1 and IgE and enhanced expression of
Th2-related genes such as IL-4. However, this phenotype
does not appear to be an intrinsic feature of Id2 deficiency
in CD4+T cells as it does not persist in T cells in vitro [104].
One possible explanation for the dysregulation of Th1/Th2
balance in the Id2−/− mice is that the reduced number of
CD8α+ DCs and IL-12 associated with this DC type in
these mice may limit the generation of Th1 type responses
[104]. Further investigations will be necessary to elucidate
the specific actions of Id2 in CD8+ and CD4+ T cells.

10. Id2 Effects outside the Immune System

In addition to the pronounced effects Id2 has on the
development of the immune system, it also plays diverse
roles in other cell types pointing to the importance of this
transcription factor in development. For example, Id2 has
been implicated in red blood cell development through its
interactions with the transcription factor PU.1 and repres-
sion of Rb protein [24, 32, 105]. Outside the hematopoietic
system, Id2 is critical for the development of mammary
glands. Id2-deficient female mice show lactation defects
associated with impaired lobuloalveolar development, while
males have significantly reduced spermatogenesis [106, 107].
Similarly, Id2-induced cell cycle arrest prevents differentia-
tion of enterocyte precursors during embryogenesis, and Id2
expression in distal tip lung epithelial multipotent precursors
is essential for normal lung formation and remodelling
[108].

11. Conclusions and Future Directions

In the past 10 years, major steps forward have been made
in understanding how Id and E proteins work to regulate
lymphopoiesis. It has long been known that the generation of
adaptive immunity requires a diverse set of lymphocytes with
both distinct and overlapping functions. Id2 plays an impor-
tant role in defining the differentiation fate of peripheral
lymphocytes and in their responses to infection. Despite this
progress, several important questions defining the role of Id2
in lymphopoiesis remain unanswered. Although a number
of immune cell lineages require Id2 for differentiation, it
is unclear precisely where Id2 acts to define fate decisions.
Furthermore, how extrinsic signals such as cytokines regulate
Id2 and the balance of E proteins has not been investigated.
It is clear that Id2 is involved in the development of DCs,
NK, LTi, and CD3−NKp46+ cells. However, it remains to be
elucidated how these Id2-dependent lineages are develop-
mentally related and how Id2 regulates their differentiation
at a molecular level. For example, which cytokines induce Id2
expression and what are the downstream targets that control
lineage fate decisions? Furthermore, how Id2 regulates the
balance between effector/memory T-cell generation and
differentiation plasticity is poorly characterized. It is likely
that detailed elucidation of the functions of Id2 and its

regulation will lead to a deeper understanding of how this
transcription factor contributes to the overall process of
immune homeostasis and protective immunity.
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